Shadow celestial amplitudes
نویسندگان
چکیده
A bstract We study scattering amplitudes in the shadow conformal primary basis, which satisfies same defining properties as original basis and has many advantages over it. The celestial exhibit locality manifestly on sphere, behave like correlation functions field theory under operator product expansion (OPE) limit. OPE limits for three-point amplitude, general 2 ? n ? from a certain class of Feynman diagrams. In particular, we compute block s -channel four-point amplitude massless scalars at tree-level, show that coefficients factorize products coefficients.
منابع مشابه
Celestial mechanics.
Albouy, Alain (Paris, France) Belbruno, Ed (Princeton, USA) Buck, Gregory (Saint Anselm College, USA) Chenciner, Alain (Paris, France) Corbera, Montserrat (Universitat de Vic, Spain) Cushman, Richard (Utrecht, Holland and Calgary, Canada) Diacu, Florin (Victoria, Canada) Gerver, Joseph (Rutgers, USA) Hampton, Marshall (Minneapolis, USA) Kotsireas, Ilias (Wilfried Laurier, Waterloo, Canada) Laco...
متن کاملThe Motion of Celestial Bodies
The history of celestial mechanics is first briefly surveyed, identifying the major contributors and their contributions. The Ptolemaic and Copernican world models, Kepler’s laws of planetary motion and Newton’s laws of universal gravity are presented. It is shown that the orbit of a body moving under the gravitational attraction of another body can be represented by a conic section. The six or...
متن کاملCelestial Mechanics of Elastic Bodies
We construct time independent configurations of two gravitating elastic bodies. These configurations either correspond to the two bodies moving in a circular orbit around their center of mass or strictly static configurations.
متن کاملPerturbation Theory in Celestial Mechanics
4 Classical perturbation theory 4 4.1 The classical theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 4.2 The precession of the perihelion of Mercury . . . . . . . . . . . . . . . . . . . . 6 4.2.1 Delaunay action–angle variables . . . . . . . . . . . . . . . . . . . . . . 6 4.2.2 The restricted, planar, circular, three–body problem . . . . . . . . . . . 7 4.2.3 Expansi...
متن کاملSingularities in Classical Celestial Mechanics
(1) irii'ii = -gradiU(ql9 ..., qn), i = 1, ..., n, where gradf denotes the gradient with respect to q(. Thoughout this paper we use a single dot over a variable to represent its derivative with respect to time t and a double dot to represent its second derivative with respect to t. The potential energy U has a singularity whenever q(=q^ We write this singular set ^v = {€€(«?: *, = *,}, A = U Au...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of High Energy Physics
سال: 2023
ISSN: ['1127-2236', '1126-6708', '1029-8479']
DOI: https://doi.org/10.1007/jhep02(2023)017